Python线程指南

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。

尊重作者的劳动,转载请注明作者及原文地址 >.<

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

thread_stat_simple

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程”set”从后向前把所有元素改成1,而线程”print”负责从前往后读取列表并打印。那么,可能线程”set”开始改的时候,线程”print”便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如”set”要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print”获得锁定了,那么就让线程”set”暂停,也就是同步阻塞;等到线程”print”访问完毕,释放锁以后,再让线程”set”继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

Python线程指南

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程”create”创建的。如果”set”或者”print” 在”create”还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是”set”和”print”将需要一个无限循环——他们不知道”create”什么时候会运行,让”create”在运行后通知”set”和”print”显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如”set”和”print”在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉”set” 和”print”条件已经有了,你们该起床干活了;然后”set”和”print”才继续运行。

线程与条件变量的交互如下图所示:

Python线程指南


Python线程指南

1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。

Python线程指南

阻塞有三种情况:
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

encoding: UTF-8
import thread
import time
 一个用于在线程中执行的函数
def func():
for i in range(5):
print 'func'
time.sleep(1)
结束当前线程
这个方法与thread.exit_thread()等价
thread.exit() # 当func返回时,线程同样会结束
 启动一个线程,线程立即开始运行
这个方法与thread.start_new_thread()等价
 第一个参数是方法,第二个参数是方法的参数
thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
创建一个锁(LockType,不能直接实例化)
 这个方法与thread.allocate_lock()等价
lock = thread.allocate()
判断锁是锁定状态还是释放状态
print lock.locked()
 锁通常用于控制对共享资源的访问
count = 0
 获得锁,成功获得锁定后返回True
 可选的timeout参数不填时将一直阻塞直到获得锁定
 否则超时后将返回False
if lock.acquire():
count += 1
 释放锁
lock.release()
 thread模块提供的线程都将在主线程结束后同时结束
time.sleep(6) 

thread 模块提供的其他方法:
thread.interrupt_main(): 在其他线程中终止主线程。
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

encoding: UTF-8
import threading
 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
print 'func() passed to Thread'
t = threading.Thread(target=func)
t.start()
 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
def run(self):
print 'MyThread extended from Thread'
t = MyThread()
t.start() 
 

构造方法:
Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。

实例方法:
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

encoding: UTF-8
import threading
import time
def context(tJoin):
print 'in threadContext.'
tJoin.start()
将阻塞tContext直到threadJoin终止。
tJoin.join()
 tJoin终止后继续执行。
print 'out threadContext.'
def join():
print 'in threadJoin.'
time.sleep(1)
print 'out threadJoin.'
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
tContext.start() 
 

运行结果:

in threadContext. 
in threadJoin. 
out threadJoin. 
out threadContext

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:
Lock()

实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。






# encoding: UTF-8
import threading
import time
data = 0
lock = threading.Lock()
def func():
global data
print '%s acquire lock...' % threading.currentThread().getName()
调用acquire([timeout])时,线程将一直阻塞,
直到获得锁定或者直到timeout秒后(timeout参数可选)。
 返回是否获得锁。
if lock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
data += 1
time.sleep(2)
print '%s release lock...' % threading.currentThread().getName()
 调用release()将释放锁。
lock.release()
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.tart()




3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:
RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。

# encoding: UTF-8
import threading
import time
rlock = threading.RLock()
def func():
# 第一次请求锁定
print '%s acquire lock...' % threading.currentThread().getName()
if rlock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
time.sleep(2)
# 第二次请求锁定
print '%s acquire lock again...' % threading.currentThread().getName()
if rlock.acquire():
print '%s get the lock.' % threading.currentThread().getName()
time.sleep(2)
# 第一次释放锁
print '%s release lock...' % threading.currentThread().getName()
rlock.release()
time.sleep(2)
# 第二次释放锁
print '%s release lock...' % threading.currentThread().getName()
rlock.release()
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start() 

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:
Condition([lock/rlock])

实例方法:
acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

# encoding: UTF-8
import threading
import time
# 商品
product = None
# 条件变量
con = threading.Condition()
# 生产者方法
def produce():
global product
if con.acquire():
while True:
if product is None:
phrint 'produce...'
product = 'anything'
# 通知消费者,商品已经生产
con.notify()
# 等待通知
con.wait()
time.sleep(2)
# 消费者方法
def consume():
global product
if con.acquire():
while True:
if product is not None:
print 'consume...'
product = None
# 通知生产者,商品已经没了
con.notify()
# 等待通知
con.wait()
time.sleep(2)
t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start() 

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:
Semaphore(value=1): value是计数器的初始值。

实例方法:
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

# encoding: UTF-8
import threading
import time
# 计数器初值为2
semaphore = threading.Semaphore(2)
def func():
# 请求Semaphore,成功后计数器-1;计数器为0时阻塞
print '%s acquire semaphore...' % threading.currentThread().getName()
if semaphore.acquire():
print '%s get semaphore' % threading.currentThread().getName()
time.sleep(4)
# 释放Semaphore,计数器+1
print '%s release semaphore' % threading.currentThread().getName()
semaphore.release()
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()
time.sleep(2)
# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release() 

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:
Event()

实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

# encoding: UTF-8
import threading
import time
event = threading.Event()
def func():
# 等待事件,进入等待阻塞状态
print '%s wait for event...' % threading.currentThread().getName()
event.wait()
# 收到事件后进入运行状态
print '%s recv event.' % threading.currentThread().getName()
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()
time.sleep(2)
# 发送事件通知
print 'MainThread set event.'
event.set() 

3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数

实例方法:
Timer从Thread派生,没有增加实例方法。

# encoding: UTF-8
import threading
def func():
print 'hello timer!'
timer = threading.Timer(5, func)
timer.start() 

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

# encoding: UTF-8
import threading
local = threading.local()
local.tname = 'main'
def func():
local.tname = 'notmain'
print local.tname
t1 = threading.Thread(target=func)
t1.start()
t1.join()
print local.tname 

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

# encoding: UTF-8
import threading
alist = None
condition = threading.Condition()
def doSet():
if condition.acquire():
walist is None:
condition.wait()
for i in range(len(alist))[::-1]:
alist[i] = 1
condition.release()
def doPrint():
if condition.acquire():
while alist is None:
condition.wait()
for i in alist:
print i,
print
condition.release()
def doCreate():
global alist
if condition.acquire():
if alist is None:
alist = [0 for i in range(10)]
condition.notifyAll()
condition.release()
tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start() 

转自:http://www.cnblogs.com/huxi/archive/2010/06/26/1765808.html

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/1006

(0)
s19930811s19930811
上一篇 2015-03-13
下一篇 2015-03-13

相关推荐

  • N28-第四周

    1、复制/etc/skel目录为/home/tuser1,要求/home/tuser1及其内部文件的属组和其它用户均没有任何访问权限。
    2、编辑/etc/group文件,添加组hadoop。
    3、手动编辑/etc/passwd文件新增一行,添加用户hadoop,其基本组ID为hadoop组的id号;其家目录为/home/hadoop。
    4、复制/etc/skel目录为/home/hadoop,要求修改hadoop目录的属组和其它用户没有任何访问权限。
    5、修改/home/hadoop目录及其内部所有文件的属主为hadoop,属组为hadoop。
    6、显示/proc/meminfo文件中以大写或小写S开头的行;用两种方式;
    7、显示/etc/passwd文件中其默认shell为非/sbin/nologin的用户;
    8、显示/etc/passwd文件中其默认shell为/bin/bash的用户;
    9、找出/etc/passwd文件中的一位数或两位数;
    10、显示/boot/grub/grub.conf中以至少一个空白字符开头的行;
    11、显示/etc/rc.d/rc.sysinit文件中以#开头,后面跟至少一个空白字符,而后又有至少一个非空白字符的行;
    12、打出netstat -tan命令执行结果中以‘LISTEN’,后或跟空白字符结尾的行;
    13、添加用户bash, testbash, basher, nologin (此一个用户的shell为/sbin/nologin),而后找出当前系统上其用户名和默认shell相同的用户的信息;

    2017-12-30
  • 网络管理

                 网络管理 一、 OSI七层模型   OSI七层模型结构如下            OSI七层模式基本只是用于我们学习时候使用,因为其将每层协议定义的太规范,导致缺乏灵活性,所以现实中仍然以tcp/ip四层模型为主,OSI七层模型从下至上依次为:      1、 物理层( physical layer)   物理层是通过网络介质(如网…

    Linux干货 2016-09-06
  • N22-第一周作业

    1、描述计算机的组成及其功能    组成:        硬件:            CPU:运算器、控制器、寄存器、缓存     &nb…

    Linux干货 2016-08-15
  • 第3周作业

    一、列出当前系统上的所有已经登录的用户的用户名 [root@bogon tmp]# who | cut -d ” ” -f1 | sort -urootwing[root@bogon tmp]# who | cut -d ” ” -f1 | uniqrootwing 二、取出最后登录到当前系统的用户相关信息 […

    Linux干货 2017-07-25
  • Centos6.5利用RubyGems的fpm制作zabbix_agent的rpm包,并使用ansible批量部署

    一、 搭建rpm包制作环境 安装gcc [root@lvs1 ~]# yum install gcc 安装make [root@lvs1 ~]# yum install make 安装ruby源(ruby版本必须要在1.9.3以上,centos自带的是1.8的版本,需要自己编译安…

    Linux干货 2016-08-20
  • ubuntu kylin虚拟机安装KVM

    1.确定物理机CPU是否支持虚拟化    查看方法1:计算机->属性->处理器(Inter(R) Core(TM) i5-2450M),然后去网上查看自己的电脑CPU是否支持虚拟化,    地址http://ark.intel.com/zh-cn/找到自己CPU的信息,虚拟化技术后是否显示为yes,如果是n…

    Linux干货 2016-10-15

评论列表(1条)

  • 肉牛
    肉牛 2015-04-04 02:50

    不错的文章,内容远见卓识.