你的数据根本不够大,别老扯什么Hadoop了


本文原名“Don’t use Hadoop when your data isn’t that big ”,出自有着多年从业经验的数据科学家Chris Stucchio,纽约大学柯朗研究所博士后,搞过高频交易平台,当过创业公司的CTO,更习惯称自己为统计学者。对了,他现在自己创业,提供数据分析、推荐优化咨询服务,他的邮件是:stucchio@gmail.com 。


     有人问我,“你在大数据和Hadoop方面有多少经验?”我告诉他们,我一直在使用Hadoop,但是很少处理几TB以上数据的任务 。我基本上只是一个大数据新手——知道概念,写过代码,但是没有大规模经验。

      他们又问我,“你能使用Hadoop做简单的group by(分组)和sum(统计)吗?”我说当然可以,但我会说需要看具体的文件格式。

他们给我一个U盘,里面存储600MB数据(他们所有的数据,而不是样本数据)。不知道为什么,我用pandas.read_csvPandas是一种Python数据分析库)解决方案,而不是Hadoop完成了这个任务后,他们显得很不满意。

      Hadoop实际上是有很多局限性的。Hadoop可以运行一个通用的计算,下面我用伪码进行说明:

Scala风格的伪码:

collection.flatMap( (k,v) => F(k,v) ).groupBy( _._1 ).map( _.reduce( (k,v) => G(k,v) ) )

使用SQL风格的伪码表示

SELECT G(...) FROM table GROUP BY F(...)

      或者想我多年解释一样:

目标:统计计算图书馆书籍的数量  
Map:你统计奇数书架上书的数量,我统计偶数书架上书的数量。(做统计的人越多,统计出结果越快,就是机器越多,效率越高)  
Reduce:把我们每个人单独统计的结果数据加在一起。

        我们所做的只有两个:F(k,v)和G(k,v),除非要在中间步骤中做性能优化,其他一切都是固定的。

    在Hadoop里,所有计算都必须按照一个map、一个group by、一个aggregate或者这种计算序列来写。这和穿上紧身衣一样,多憋得慌啊。许多计算用其他模型其实更适合。穿上紧身衣(使用hadoop)的唯一原因就是,可以扩展到极大的数据集。可大多数情况,你的数据集很可能根本远远够不上那个数量级。

    可是呢,因为Hadoop和大数据是热词,世界有一半的人都想穿上紧身衣,即使他们实际不需要Hadoop。

一、如果我的数据量是几百兆,Excel可能没法加载它
        对于Excel来说的“很大的数据”并非大数据,其实还有其它极好的工具可以使用——我喜欢的是基于Numpy库之上Pandas。它可以将几百MB数据以高效的向量化格式加载到内存,在我购买已3年的笔记本上,一眨眼的功夫,Numpy就能完成1亿次浮点计算。Matlab和R也是极好的工具。

      Pandas构建于Numpy库之上,可以以矢量格式的方式有效地把数百兆的数据载入到内存中。在我购买已3年的笔记本上,它可以用Numpy在一眨眼的功夫把1亿的浮点数乘在一起。Matlab和R也是极好的工具。
       因此,对于几百兆的数据量,典型的做法是写一个简单的Python脚本逐行读取,处理,然后写到了一个文件就行了

二、可我的数据是10GB呢?
       我买了台新笔记本,它有16GB的内存(花$141.98)和256GB的SSD(额外200美元)。,如果在Pandas里加载一个10GB的csv文件,实际在内存里并没有那么大(内存不是占有10G)——可以将 “17284932583” 这样的数值串存为4位或者8位整数,“284572452.2435723”存为8位双精度。

    最坏的情况下你还可以不同时将所有数据都一次加载到内存里。

三、可我的数据是100GB、500GB或1TB呢?

     一个2T的硬盘才94.99美元,4T是169.99。买一块,加到桌面PC或者服务器上,然后装上PostgreSQL来解决它

四、Hadoop << SQL或Python脚本

       在计算的表达能力来说,Hadoop比SQL差。Hadoop里能写的计算,在SQL或者简单的Python脚本都可以更轻松地写出来。
       SQL是一个直观的查询语言,适合做业务分析,业务分析师和程序员都很常用。SQL查询非常简单,而且还非常快——只有数据库使用了正确的索引,要花几秒钟的sql查询都不太常见。

     Hadoop没有索引的概念,Hadoop只有全表扫描,而且Hadoop抽象层次太多了——我之前的项目尽在应付Java内存错误( java memory errors)、内存碎片和集群竞用了,而这些时间远多于实际的数据分析工作。

      如果你的数据并不是像SQL表那样的结构化数据(比如纯文本、JSON对象、二进制对象),通常是直接写一个小的Python脚本或者Ruby脚本逐行处理更直接。保存到多个文件,然后逐个处理即可,SQL不适用的情况下,从编程来说Hadoop也没那么糟糕,但相比Python脚本仍然没有什么优势。

    除了难以编程,Hadoop还一般总是比其他技术方案要慢。只要索引用得好,SQL查询非常快。比如要计算join,PostgreSQL只需查看索引(如果有),然后查询所需的每个键。而Hadoop呢,必须做全表扫描,然后重排整个表。排序通过多台机器之间分片可以加速,但也带来了跨多机数据流处理的开销。如果要处理二进制文件,Hadoop必须反复访问namenode。而简单的Python脚本只要反复访问文件系统即可。

五、我的数据超过了5TB

     只能使用Hadoop,而无需做过多的选择。

    你的命可真苦——只能苦逼地折腾Hadoop了,没有太多其他选择(可能还能用许多硬盘容量的高富帅机器来扛),而且其他选择往往贵得要命(脑海中浮现出IOE等等字样……)。

    用Hadoop唯一的好处是扩展。如果你的数据是一个数TB的单表,那么全表扫描是Hadoop的强项。此外的话(如果你没有这样大数据量的表),请关爱生命,尽量远离Hadoop。它带来的烦恼根本不值,用传统方法既省时又省力。

六、Hadoop是一个极好的工具

         我并不讨厌Hadoop,当我用其它工具不能很好处理数据时我会选择Hadoop。另外,我推荐使用Scalding,不要使用Hive或Pig。Scalding支持使用Scala语言来编写Hadoop任务链,隐藏了其下的MapReduce。

转自:http://blog.csdn.net/hguisu/article/details/12585383

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/2621

(0)
s19930811s19930811
上一篇 2015-04-04
下一篇 2015-04-04

相关推荐

  • shell脚本编写-5

      1、 数组 变量:存储单个元素的内存空间 数组:存储多个元素的连续的内存空间,相当于多个变量的集合 数组名和索引 索引:编号从0 开始,属于数值索引 注意:索引可支持使用自定义的格式,而不仅是数值格式,即为关联索引,bash4.0版本之后开始支持。而且bash 的数组支持稀疏格式(索引不连续) 1)、定义数组 声明数组: declare -a …

    Linux干货 2016-09-01
  • 博客作业网络班22期+第5周(9.5-9.11)

    1、显示当前系统上root、fedora或user1用户的默认shell [root@MyCloudServer wjb]# egrep '^(root|fedora|user1)\>' /etc/passwd | cut -d: -f7/bin/bash 2、找出/etc/rc.d/init.d/functions文件中某单词后面…

    Linux干货 2016-09-15
  • shell-在线翻译脚本

            在linux过程中难免会碰到陌生的单词,此时不得不打开翻译软件或网页请求翻译,但这样切换界面比较麻烦,也浪费时间;         今天头脑发热,尝试着在网上找命令行翻译工具,但无果;…

    2017-02-19
  • 安装 VMware Workstation

    1.第一步 打开安装包所在位置 2.第二步 开始安装 ai      上面的路径看个人习惯修改,然后点击下一步 3.安装完成后,点击输入许可证秘钥  打开Vmware注册码生成器  安装成功

    2017-07-11
  • 第三周博客作业

    1、列出当前系统上所有已经登录的用户的用户名,注意:同一个用户登录多次,则只显示一次即可。 [root@localhost ~]# who (unknown) :0           2016-12-15 2…

    Linux干货 2016-12-20
  • 初入命令世界

    一、inode节点号         在linux中,每一个文件都有唯一的inode号,inode号也是系统识别的唯一编码,而文件名仅仅是为了使用者区分辨认, inode (index node )表中包含文件系统所有文件列表 一个节点(索引节点)是在一个表项,包含有关…

    2017-05-26