三次握手,四次挥手

TCP/IP协议的详细信息参看《TCP/IP协议详解》三卷本。

在谈及TCP建立连接和释放连接过程,先来简单认识一下TCP报文段首部格式的的几个名词(这里只是简单说明,具体请查看相关教程)下面是TCP报文格式图:

三次握手,四次挥手
    序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。
    确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。
    确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效
    同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。
    终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接
    PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。
一、TCP建立连接三次握手
(1)、三次握手的过程
   1)主机A向主机B发送TCP连接请求数据包,其中包含主机A的初始序列号seq(A)=x。(其中报文中同步标志位SYN=1,ACK=0,表示这是一个TCP连接请求数据报文;序号seq=x,表明传输数据时的第一个数据字节的序号是x);
   2)主机B收到请求后,会发回连接确认数据包。(其中确认报文段中,标识位SYN=1,ACK=1,表示这是一个TCP连接响应数据报文,并含主机B的初始序列号seq(B)=y,以及主机B对主机A初始序列号的确认号ack(B)=seq(A)+1=x+1)
   3)第三次,主机A收到主机B的确认报文后,还需作出确认,即发送一个序列号seq(A)=x+1;确认号为ack(A)=y+1的报文;
三次握手,四次挥手
(2)为什么需要第三次握手?
     还要再发送一次确认是为了,防止已失效的连接请求报文段突然又传到了B,因而产生错误。
     已失效的报文段:正常情况下:A发出连接请求,但因为丢失了,故而不能收到B的确认。于是A重新发出请求,然后收到确认,建立连接,数据传输完毕后,释放连接,A发了2个,一个丢掉,一个到达,没有“已失效的报文段”
     但是,某种情况下,A的第一个在某个节点滞留了,延误到达,本来这是一个早已失效的报文段,但是在A发送第二个,并且得到B的回应,建立了连接以后,这个报文段竟然到达了,于是B就认为,A又发送了一个新的请求,于是发送确认报文段,同意建立连接,假若没有三次的握手,那么这个连接就建立起来了(有一个请求和一个回应),此时,A收到B的确认,但A知道自己并没有发送建立连接的请求,因为不会理睬B的这个确认,于是呢,A也不会发送任何数据,而B呢却以为新的连接建立了起来,一直等待A发送数据给自己,此时B的资源就被白白浪费了。但是采用三次握手的话,A就不发送确认,那么B由于收不到确认,也就知道并没有要求建立连接。
     简而言之:第三次握手,主机A发送一次确认是为了防止:如果客户端迟迟没有收到服务器返回的确认报文,这时他会放弃连接,重新启动一条连接请求;但问题是:服务器不知客户端没收到,所以他会收到两个连接请求,白白浪费了一条连接开销。
二、TCP释放连接四次握手
(1)四次握手过程
假设主机A为客户端,主机B为服务器,其释放TCP连接的过程如下:
    1) 关闭客户端到服务器的连接:首先客户端A发送一个FIN,用来关闭客户到服务器的数据传送,然后等待服务器的确认。其中终止标志位FIN=1,序列号seq=u
   2) 服务器收到这个FIN,它发回一个ACK,确认号ack为收到的序号加1。
   3) 关闭服务器到客户端的连接:也是发送一个FIN给客户端。
   4) 客户段收到FIN后,并发回一个ACK报文确认,并将确认序号seq设置为收到序号加1。
     首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
三次握手,四次挥手
     主机A发送FIN后,进入终止等待状态, 服务器B收到主机A连接释放报文段后,就立即给主机A发送确认,然后服务器B就进入close-wait状态,此时TCP服务器进程就通知高层应用进程,因而从A到B的连接就释放了。此时是“半关闭”状态。即A不可以发送给B,但是B可以发送给A。
此时,若B没有数据报要发送给A了,其应用进程就通知TCP释放连接,然后发送给A连接释放报文段,并等待确认。A发送确认后,进入time-wait,注意,此时TCP连接还没有释放掉,然后经过时间等待计时器设置的2MSL后,A才进入到close状态。

(2)为什么要等待2MSL呢?
    MSL即Maximum Segment Lifetime,也就是最大报文生存时间,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。引用《TCP/IP详解》中的话:“它(MSL)是任何报文段被丢弃前在网络内的最长时间”。RFC 793中规定MSL为2分钟,实际应用中常用的是30秒,1分钟和2分钟等。
    TCP的TIME_WAIT状态需要等待2MSL,当TCP的一端发起主动关闭,在发出最后一个ACK包后,即第3次握手完成后发送了第四次握手的ACK包后就进入了TIME_WAIT状态,必须在此状态上停留两倍的MSL时间,等待2MSL时间主要目的是怕最后一个ACK包对方没收到,那么对方在超时后将重发第三次握手的FIN包,主动关闭端接到重发的FIN包后可以再发一个ACK应答包。在TIME_WAIT状态时两端的端口不能使用,要等到2MSL时间结束才可继续使用。当连接处于2MSL等待阶段时任何迟到的报文段都将被丢弃。不过在实际应用中可以通过设置SO_REUSEADDR选项达到不必等待2MSL时间结束再使用此端口。
    概括原因如下:
    ①、为了保证A发送的最后一个ACK报文段能够到达B。即最后这个确认报文段很有可能丢失,那么B会超时重传,然后A再一次确认,同时启动2MSL计时器,如此下去。如果没有等待时间,发送完确认报文段就立即释放连接的话,B就无法重传了(连接已被释放,任何数据都不能出传了),因而也就收不到确认,就无法按照步骤进入CLOSE状态,即必须收到确认才能close。
    ②、防止“已失效的连接请求报文段”出现在连接中。经过2MSL,那些在这个连接持续的时间内,产生的所有报文段就可以都从网络中消失。即在这个连接释放的过程中会有一些无效的报文段滞留在楼阁结点,但是呢,经过2MSL这些无效报文段就肯定可以发送到目的地,不会滞留在网络中。这样的话,在下一个连接中就不会出现上一个连接遗留下来的请求报文段了。
可以看出:B结束TCP连接的时间比A早一点,因为B收到确认就断开连接了,而A还得等待2MSL.
(3)为什么TCP释放连接需要四次?
      TCP建立连接要进行三次握手,而断开连接要进行四次。这是由于TCP的半关闭造成的。因为TCP连接是全双工的(即数据可在两个方向上同时传递)所以进行关闭时每个方向上都要单独进行关闭。这个单方向的关闭就叫半关闭。当一方完成它的数据发送任务,就发送一个FIN来向另一方通告将要终止这个方向的连接。
     注意:
     1)发送了FIN只是表示这端不能继续发送数据(应用层不能再调用send发送),但是还可以接收数据。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据,比如:如主机A收到主机B的FIN断开TCP连接请求,只是表示主机B已经发送完数据,主机A收到FIN后作出应答,并终止这个方向的数据传输,此时处于半关闭状态。但是主机A仍然可以发送数据的,只有当主机A发送完数据并发送FIN给主机B时,主机B才停止这个方向的数据传输,并关闭TCP连接。
     2)在很多时候,TCP连接的断开都会由TCP层自动进行,例如你CTRL+C终止你的程序,TCP连接依然会正常关闭,你可以写代码试试。

原创文章,作者:眼一睁,如若转载,请注明出处:http://www.178linux.com/86162

(2)
眼一睁眼一睁
上一篇 2017-09-03 22:50
下一篇 2017-09-03

相关推荐

  • N22-第24周博客作业——-虚拟化技术

    虚拟化技术—基础(1) 本文围绕下面3个问题进行对虚拟化技术展开讨论: 1、虚拟化技术实现方式有哪些?虚拟化技术分哪些? 2、请分别通过kvm、xen工具来实现虚拟化系统的部署? 3、请描述openstack、kvmqemu-kv、libvirt及xen之间的关系。 虚拟化诞生和发展     1961年 IBM709…

    Linux干货 2016-10-17
  • 构建一个高可用的Nginx集群

    实验目的: 构建一个高可用的Nginx集群。 实验要求: 1、基于nat结构实现; 2、实现高可用; 实验拓扑图形: 实验步骤: 1、  按图配置各个网卡地址; 2、  设置Nginx主机(下面带#的部分为从所需要的配置,其他则一样) Yum install httpd nginx Vim /etc/httpd/conf/httpd.co…

    2017-05-15
  • 浅述sed命令

    1、sed工作原理       sed(stream editor)是一种流编辑器,本身也是一个管道命令,可以分析编辑标准输入(standard input),包括对数据进行替换、删除、新增、选取特定行等等。运行时以行为单位,每次只处理一行的内容,因此它又被称为行编辑器。sed还可与正则表达式配合使用,从而简…

    Linux干货 2016-08-10
  • CentOS的软件包的管理之rpm和yum

    在linux上,一个软件包通常由二进制程序,库文件,配置文件和帮助文件组成。 其中: 二进制程序一般都放在/bin,/sbin,/usr/bin,/usr/sbin,/usr/local/bin和/usr/local/sbin这几个目录下边; 库文件都放在/lib,/lib64,/usr/lib,/usr/lib64,/usr/local/lib和/usr/…

    Linux干货 2017-04-23
  • linux发展史——兽人永不为奴

      了解历史才能判断趋势。既然我们已经打算跳入运维这个坑,了解先烈的历史事迹是必须的。为什么说是必须的呢?现在我们处于一个知识时代,资本在追着知识跑,像海银资本这种vc都看不起中国的市场了,已经带着中国的资本在万恶资本主义的老美投资了。 1计算机硬件组成   操作系统成为了非常重要人类创造生产力的场所,很多人都开始追本…

    Linux干货 2016-10-14
  • Linux进程篇16.2pstree命令:【进程树】

    pstree命令:【进程树】

    Linux干货 2017-12-18