• 非线性结构
  • 树是n(n >= 0)个元素的集合:
    • (1)每个元素称为结点(node);
    • (2)有一个特定的结点,称为根结点或根(root);
    • (3)除根结点外,其余结点被分成m(m>=0)个互不相交的有限集合,而每个子集又都是一棵树(称为原树的子树Subtree)
  • 注意
    • n = 0时,称为空树
    • 树只有一个特殊的没有前驱的元素,称为树的根(Root)
    • 树中除了根结点外,其余元素只能有一个前驱,可以有零个或多个后继
    • 子树也有自己的根

树的概念

  • 结点(node):树中的数据元素
  • 结点的度(degree):结点拥有的子树的数目称为度(该结点的分支数),记作d(v)
  • 叶子结点:结点的度为0,称为叶子结点leaf、终端结点、末端结点
  • 分支结点:结点的度不为0,称为非终端结点或分支结点
  • 分支:结点之间的关系
  • 内部结点:除根结点外的分支结点,也不包括叶子结点
  • 树的度是树内各结点的度的最大值。  D子树的度就是3

59df2441cf5be4075000000f

  • 孩子结点(Child):
    • B是A的孩子
  • 双亲结点(Parent):
    • C是E,F的双亲
  • 兄弟结点(Sibling):
    • 具有相同双亲结点的结点
    • B和C是兄弟
  • 祖先结点:
    • 从根结点到该结点所经分支上所有的点
    • A,B,D都是G的祖先结点
  • 子孙结点:
    • 结点的所有子树上结点都称为该结点的子孙
    • C的子孙是E,F,J
  • 结点的层次(level):
    • 根结点为第一层,根的孩子为第二层,以此类推,记作L(v)
  • 树的深度(高度Depth):
    • 树的层次的最大值
    • 上图树深度为4
  • 堂兄弟:
    • 双亲在同一层的结点
    • D,E或F是堂兄弟

59df2441cf5be4075000000f

  • 有序树
    • 结点的子树是有顺序的(兄弟有大小,先后次序)
  • 无序树
    • 结点的子树是无序的,可以交换
  • 路径
    • 一条线串下来的,前一个都是后一个的双亲结点
  • 路径长度   =   路径上的结点数 – 1 ,也是分支数
  • 森林
    • m(m>=0)颗不相交的树的集合
    • 对于结点而言,其子树的集合就是森林。
    • A结点的2颗子树的集合就是森林

树的特点

  • 唯一的根
  • 子树不相交
  • 除根以外,每个元素只能有一个前驱,可以有零个或多个后继
  • 根结点没有双亲,叶子结点没有孩子
  • vi是vj的双亲,则L(vi) = L(vj) – 1, 也就是说双亲比孩子结点的层次小1
  • 堂兄弟的双亲未必是兄弟,例如I,J是堂兄弟,而他们的双亲也是堂兄弟

二叉树

  • 每个结点最多2颗子树
    • 二叉树不存在degree > 2 的结点
  • 是有序树,左子树、右子树是顺序的,不能交换次序
  • 即使某个结点有一颗子树,也要确定是左子树还是右子树

 

  • 二叉树的五种基本形态
    • 空二叉树
    • 只有一个根结点
    • 根节点只有左子树
    • 根节点只有右子树
    • 根节点只有左子树和右子树

斜树

  • 左斜树,所有结点都只有左子树
  • 右斜树,相反
    59df2c3acf5be40750000010

满二叉树

  • 一颗二叉树的所有分支结点都有左右子树,并且所有叶子结点都在最下面一层
  • 同样深度二叉树中,满二叉树结点最多
  • k为深度,则结点总数为2**k-1
  • 如下图,深度为4的15个结点的满二叉树
    59df2d42cf5be40750000012

完全二叉树Complete Binary Tree

  • 除了最后一层的所有的结点都集中在最左边,其他层都是满的
  • 完全二叉树有满二叉树引出
  • 区别在于他们的最后一层,完全二叉树最后一层的结点可以不满

59df2efccf5be40750000013

59df2f1ccf5be40750000015


二叉树的性质

59df2f4ecf5be40750000016

1.在二叉树的第i层上最多有2**(i-1)个结点

2.深度为 k 的二叉树,最多有 2**k-1 个结点

3.对任何一颗二叉树,如果其终端结点数为n0,度数为2的结点数为n3,则有n0 = n2 + 1

  • 换句话说,就是叶子结点数 -1 就等于度数为2 的结点数
  • 证明
    59df38cacf5be40750000019

4.其他性质

  • 高度为k的二叉树,至少有k个结点
  • 含有n个的结点的二叉树的高度之多为n,最小为 math.ceil(log2 (n+1))

5.具有n个结点的完全二叉树的深度为 int(log 2 n) + 1或者math.ceil(log2 (n+1))

6.如果有一颗n个结点的完全二叉树,结点按照层序编号,如下图
59df3bbccf5be4075000001a

  • 如果i = 1,则结点i是二叉树的根
  • i > 1,双亲是int(i/2),这是向下取整
  • 双亲结点是 i, 左孩子结点就是 2i, 右孩子结点就是 2i+1
  • 2i > n,则结点 i 无左孩子,即结点i为叶子结点;否则其左孩子结点存在,编号为2i
  • 2i+1 > n,则结点 i 无右孩子;这里不能说明结点i没有左孩子。否则其右孩子结点存在,编号为2i+1

本文来自投稿,不代表Linux运维部落立场,如若转载,请注明出处:http://www.178linux.com/87842

(1)
nolannolan
上一篇 2017-10-16 13:47
下一篇 2017-10-16

相关推荐

  • grep学习示例

    grep学习示例 Linux中grep命令使用较多,现将自己学习的罗列几条. 1. 去除空白行     空白行是指空行或者只有空格的行,使用grep命令去除空白行,命令如下:      grep -v  “^[[:space:]]*$” &nbs…

    Linux干货 2017-07-30
  • date命令常见用法。

    date是一个非常实用的小工具,可以查看时间,并且也可以添加选项去完成自己想完成的东西。

    Linux干货 2017-11-13
  • php的serialize序列化和json性能测试

    最近需要对大数组做存储,需要在serialize序列化和json之间做了选择。因此需要做了性能测试。 在php5.2之前对数组存储的时候,大都使用serialize系列化。php5.2之后,开始内置了 JSON 的支持。 在网上看到有些资料说:json_encode和json_decode比内置的serialize和unserialize…

    Linux干货 2015-04-07
  • 单引号,双引号,反引号的作用(首篇)

    哈哈哈!这是我的博客生涯的开始,也是我学习Linux的开始,所以我将励志成为一名老司机带你装X带你飞。 1.首先是三兄弟中的单引号,它的作用只是单纯的呈现出自己所包含的文字并不能执行其中的命令,所以它也是三兄弟中最笨的那个,作用单一,简单。 2,再来介绍介绍双引号,他的作用和单引号大同小异,它能包含单引号,反引号,以及除了执行以$和\的字符为首的函数能认识之…

    2017-07-11
  • 由Linux中一个小问题引发的思考

    一、一个小问题 1、在学习Linux中我们经常会遇到很多有趣的小问题,今天笔者就遇到了一个很有意思的小问题,现在分享给大家:      “如何在本机字符终端登陆时,除显示原有信息外,再显示当前终端号,时间和主机名?” 2、实现方法如下:      输入vim /etc/…

    2017-07-16
  • heartbeatV1+nfs实现高可用httpd

        随着互联网技术的不断发展,Web应用也越来越普遍,Web服务器的无故障工作时间就显得尤重要,但由于各种各样的原因,一台服务器并不能保证永远不出问题的运行,此时就需要一种机制来实现多台服务器共同为相同的来务功能提供服务,以确保任意一台服务器宕机后,不会影响其所承载的业务的访问。   &nbsp…

    Linux干货 2015-06-26