python高阶函数与装饰器

##**高阶函数**
– 函数是python中的一等公民
– 函数也是对象,可调用对象
– 函数可以作为普通变量、参数、返回值等等
– 数学概念y = g(f(x))
– 高阶函数满足以下至少一个条件:1.接收一个或多个函数作为参数 2.输出一个函数

##**举例(计数器)**
def counter(base):
def inc(step=1):
nonlocal base #base在这里自由变量,闭包。
base += step
return base
return inc
>上述代码 f1 = counter(5) 和 f2 = counter(5),其f1与f2不相等。他们在堆里面不是同一个对象创建。

##**自定义sort函数(版本1)**
def sort(iterable):
ret = []
for x in iterable:
for i, y in enumerate(ret):
if x > y:
ret.insert(i,x)
break
else:
ret.append(x)
return ret
print(sort([1,2,5,4,2,3,5,6]))

##**自定义sort函数(版本2)**
def sort(iterable, reverse=False): #用一个参数控制顺序
ret = []
for x in iterable:
for i, y in enumerate(ret):
flag = x>y if reverse else x<y
if flag:
ret.insert(i,x)
break
else:
ret.append(x)
return ret

##**自定义sort函数(版本3)**
def sort(iterable, fn=lambda a,b : a>b): #函数写进参数里
ret = [ ]
for x in iterable:
for i, y in enumerate(ret):
if fn(x, y): # 返回一个bool值
ret.insert(i,x)
break
else:
ret.append(x)
return ret
print(sort([1,2,5,4,2,3,5,6]))

##**内建高阶函数**
1.排序 :sorted(iterable,[,key][,reverse])
> 返回一个新的列表,对一个可迭代对象的所有元素排序,排序规则为key定义的函数,reverse表示是否排序翻转。

2.过滤 :filter(function, iterable) –> filter object
> (1) 过滤可迭代对象的元素,返回一个迭代器
(2) function一个具有一个参数的函数,返回bool
(3) 过滤能被3整除的数 list(filter(lambda x: x%3==0, [1,9,55,150,-3,78,28,123]))

3.映射 :map(func, *iterables) –> map object
> 对多个可迭代对象的元素按照指定的函数进行映射,返回一个迭代器
list(map(lambda x:2*x+1, range(5)))
[1, 3, 5, 7, 9]
dict(map(lambda x: (x%5,x) , range(500))) #相同key的值被覆盖,所以只有五个
{0: 495, 1: 496, 2: 497, 3: 498, 4: 499}

##**柯里化currying**
– 定义:指的是将原来接收两个参数的函数变成新的接收一个参数的函数的过程。新的函数返回一个以原有第二个参数为参数的函数
##举例
def add(x, y):
return x + y
转换为如下:
def add(x): #通过嵌套函数可以完成柯里化
def _add(y):
return x+y
return _add
add(5)(6)

##**装饰器(无参)**
- 它是一个函数
- 函数作为它的形参
- 返回值也是一个函数
- 可以使用@functionname方式,简化调用
- 装饰器是高阶函数,但装饰器是对传入函数的功能的装饰(功能增强)

##举例
 import datetime
 import time
 def logger(fn):
 def wrap(*args, **kwargs):
 # before 
 print("args={}, kwargs={}".format(args,kwargs))
 start = datetime.datetime.now()
 ret = fn(*args, **kwargs)
 # after 
 duration = datetime.datetime.now() - start
 print("function {} took {}s.".format(fn.__name__, duration.total_seconds()))
 return ret
 return wrap
 @logger #add = logger(add)
 def add(x, y):
 print("===call add===========")
 time.sleep(2)
 return x + y
 print(add(4, y=7))
 
##**文档字符串**
- python是文档字符串Documentation Strings
- 在函数语句块的第一行,且习惯是多行的文本,所以多使用三引号
- 惯例是首字母大写,第一行概述,空一行,第三行写详细描述
- 可以使用特殊属性__doc__访问这个文档
##
 def add(x,y):
 """This is a function of addition"""
 a = x+y
 return x + y
 print("name={}\ndoc={}".format(add.__name__, add.__doc__))
 print(help(add))

##**装饰器例子**
 def logger(fn):
 def wrapper(*args,**kwargs):
 'I am wrapper'
 print('begin')
 x = fn(*args,**kwargs)
 print('end')
 return x
 return wrapper
 @logger #add = logger(add)
 def add(x,y):
 '''This is a function for add'''
 return x + y
 print("name={}, doc={}".format(add.__name__, add.__doc__))
>上述例子有副作用,原函数对象的属性都被替换了,而使用装饰器,我们的需求是查看原函数的属性。
 
##解决方法 
 def copy_properties(src, dst): 
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__
 装饰其中调用copy_properties(fn, wrapper)
 
##**完整解决方案**
 def copy_properties(src):
 def _copy(dst):
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__
 return dst
 return _copy
 def logger(fn):
 @copy_properties(fn) # wrapper = wrapper(fn)(wrapper)
 def wrapper(*args,**kwargs):
 'I am wrapper'
 print('begin')
 x = fn(*args,**kwargs)
 print('end')
 return x
 return wrapper
 @logger #add = logger(add)
 def add(x,y):
 '''This is a function for add'''
 return x + y
 print("name={}, doc={}".format(add.__name__, add.__doc__))
 
##**带参装饰器**
- 它是一个函数
- 函数作为它的形参
- 返回值是一个不带参的装饰器函数
- 使用@functionname(参数列表)方式调用
- 可以看做在装饰器外层又加了一层函数

##获取函数的执行时长,对时长超过阈值的函数记录一下
 def logger(duration):
 def _logger(fn):
 @copy_properties(fn) # wrapper = wrapper(fn)(wrapper)
 def wrapper(*args,**kwargs):
 start = datetime.datetime.now()
 ret = fn(*args,**kwargs)
 delta = (datetime.datetime.now() - start).total_seconds()
 print('so slow') if delta > duration else print('so fast')
 return ret
 return wrapper
 return _logger
 @logger(5) # add = logger(5)(add)
 def add(x,y):
 time.sleep(3)
 return x + y
 print(add(5, 6))
 将记录的功能提取出来,这样就可以通过外部提供的函数来灵活的控制输出
 def logger(duration, func=lambda name, duration: print('{} took {}s'.format(name, duration))):
 def _logger(fn):
 @copy_properties(fn) # wrapper = wrapper(fn)(wrapper)
 def wrapper(*args,**kwargs):
 start = datetime.datetime.now()
 ret = fn(*args,**kwargs)
 delta = (datetime.datetime.now() - start).total_seconds()
 if delta > duration:
 func(fn.__name__, duration)
 return ret
 return wrapper
 return _logger
 
##**functools模块**
- functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS,updated=WRAPPER_UPDATES)
- 类似copy_properties功能
- wrapper包装函数,wrapped被包装函数
- 元组WRAPPER_ASSIGNMENTS中是要被覆盖的属性'__module__', '__name__', '__qualname__', '__doc__', '__annotations__
- 元组WRAPPER_UPDATES中要是被更新的属性,__dict__属性字典
- 增加一个__wrapped__属性,保留着wrapped属性

##**functools模块应用**(functools.update_wrapper)
 import datetime, time, functools
 def logger(duration, func=lambda name, duration: print('{} took {}s'.format(name, duration))):
 def _logger(fn):
 def wrapper(*args,**kwargs):
 start = datetime.datetime.now()
 ret = fn(*args,**kwargs)
 delta = (datetime.datetime.now() - start).total_seconds()
 if delta > duration:
 func(fn.__name__, duration)
 return ret
 return functools.update_wrapper(wrapper, fn)
 return _logger
 @logger(5) # add = logger(5)(add)
 def add(x,y):
 time.sleep(1)
 return x + y
 print(add(5, 6), add.__name__, add.__wrapped__, add.__dict__, sep='\n')

##**functools模块应用**(functools.wraps)
 import datetime, time, functools
 def logger(duration, func=lambda name, duration: print('{} took {}s'.format(name, duration))):
 def _logger(fn):
 @functools.wraps(fn)
 def wrapper(*args,**kwargs):
 start = datetime.datetime.now()
 ret = fn(*args,**kwargs)
 delta = (datetime.datetime.now() - start).total_seconds()
 if delta > duration:
 func(fn.__name__, duration)
 return ret
 return wrapper
 return _logger
 @logger(5) # add = logger(5)(add)
 def add(x,y):
 time.sleep(1)
 return x + y
 print(add(5, 6), add.__name__, add.__wrapped__, add.__dict__, sep='\n')
 

本文来自投稿,不代表Linux运维部落立场,如若转载,请注明出处:http://www.178linux.com/88028

(0)
miraclermiracler
上一篇 2017-10-23
下一篇 2017-10-23

相关推荐

  • N25期第八周作业

    1.请描述网桥、集线器、二层交换机、三层交换机、路由器的功能、使用场景与区别 主要功能: 网桥是一个局域网与另一个局域网之间建立连接的桥梁,属于数据链路层的一种设备。 集线器是可以将一些机器连接起来组成一个局域网的设备。 二层交换机是工作于OSI模型的第2层(数据链路层)的设备,作用和集线器类似。 三层交换机就是具有部分路由器功能的二层交换机。 路由器是互联…

    Linux干货 2017-03-08
  • week4

    一,复制/etc/skel目录为/home/tuser1,要求/home/tuser1及其内部文件的属组和其他用户均没 有任何访问权限; cp -r /etc/skel/ /home/tuser1 chmod -R go= /home/tuser1/ 二,编辑/etc/group文件,添加组hado…

    Linux干货 2016-11-18
  • 第二周作业

    课后作业 1.Linux上的文件管理类命令都有哪些,其常用的使用方法及相关示例演示。 cp:复制命令 三种常用方式: cp[OPTION]…[-T] SOURCE DEST cp[OPTION]…SOURCE…DIRECTORY cp[OPTION]…-t DIRECTORY SOURCE 如果SRC是…

    Linux干货 2016-12-10
  • 每日一练–8.8 sed,vim

     1 、删除/etc/grub2.conf 文件中所有以空白开头的行行首的空白字符     sed  's/^[[:space:]]//g' /etc grub2.conf  2 、删除/etc/fstab 文件中所有以# 开头,后面至少跟一个空白字符的行的行首的# 和空白字符   &n…

    Linux干货 2016-08-12
  • vim编辑器

    导读:      本章将主要介绍Linux中的一种常用文本编辑器vim,具体内容如下:       □使用vi和vim的三种主要模式       移动光标,进入插入模式       改变、删除、复制文本     &n…

    Linux干货 2016-08-15