装饰器
需求
一个加法函数,想增强它的功能,能够输出被调用过以及调用的参数信息
def add(x, y):
return x + y
增加信息输出功能
def add(x, y):
print(“call add, x + y”) # 日志输出到控制台
return x + y p
上面的加法函数是完成了需求,但是有以下的缺点
打印语句的耦合太高
加法函数属于业务功能,而输出信息的功能,属于非业务功能代码,不该放在业务函数加法中
装饰器做到了业务功能分离,但是fn函数调用传参是个问题
def add(x,y):
return x+y
def logger(fn)
print(‘begin’)#增强输出
x = fn(4,5)
print(‘end’)#增强的功能
return
print(logger(add)
解决传参的问题
def add(x,y):
return x+y
def logger(fn,*args,**kwargs):
print(“begin”)
x = fn(*args,**kwargs)
print(‘end’)
return x
print(logger(add,5,y=60))
将函数柯里化
def add(x,y):
return x+y
def logger(fn):
def _logger(*args,**kwargs):
print(“begin”)
x = fn(*args,**kwargs)
print(‘end’)
return x
return _logger
print(logger(add)(5,y=60))
开始变形装饰器
ef logger(fn):
def _logger(*args,**kwargs):
print(“begin”)
x = fn(*args,**kwargs)
print(‘end’)
return x
return _logger
#print(logger(add)(5,y=60))
@logger #等价于add=logger(add)
def add(x,y):
return x+y
print((add(4,50)))
装饰器(无参)
他是一个函数
函数作为他的形参
返回值也是一个函数
可以使用@functioname方式,简化调用
装饰器和高阶函数
装饰器是高阶函数,但是装饰器是对传入函数的功能的装饰(功能增强)
装饰器具体用法
import datetime
import time
def logger(fn):
def wrap(*args,**kwargs):
print(“args={},kwargs={}”.format(args,kwargs))
start = datetime.datetime.now()
ret = fn(*args,**kwargs)
duration = datetime.datetime.now() – start
print(“function {} took {}s.”.format(fn.__name__,duration.total_seconds()))
return ret
return wrap
@logger #add = logger(add)
def add(x,y):
print(“=============================”)
time.sleep(1)
return x+y
print(add(4,y=10))
Python的文档
Python是文档字符串Documenttstion strings
在函数语句的块的第一行,且习惯是多行的文本,所以多使用三引号
惯例是首字母大写,第一行写概述,空一行,第三行写详细描述
可以使用特殊属性__doc__访问这个文档
def add(x,y):
“””this is function of addtion”””
a = x+y
return x+y
print(“name={}\ndoc={}”.format(add.__name__,add.__doc__))
print(help(add))
副作用:原函数对象的属性都被替换了。而使用装饰器,我们的需求是看被封装函数的属性
def logger(fn):
def wrapper(*args,**kwargs):
“iam wrapper”
print(“begin”)
x = fn(*args,**kwargs)
print(“end”)
return x
return wrapper
@logger
def add(x,y):
”’his is a function for add”’
return x+y
print(“name={},doc={}”.format(add.__name__,add.__doc__))
改进:提供一个函数,本封装函数属性 ==copy==> 包装函数属性
def copy_pro(src,dst):
dst.__name__ = src.__name__
dst.__doc__ = src.__doc__
def logger(fn):
def wrapper(*args,**kwargs):
“l am wrapper”
print(“begin”)
x = fn(*args,**kwargs)
print(“end”)
return x
copy_pro(fn,wrapper)
return wrapper
@logger
def add(x,y):
“this is function for add”
return x+y
print(“name={},doc={}”.format(add.__name__,add.__doc__))
通过copy_pro函数将被包装函数的属性覆盖掉包装函数
凡是被装饰的函数都需要复制这些属性,这个函数很通用
可以将复制函数属性的函数构建成装饰器函数,带参装饰器
提供一个函数,被封装函数属性 ==copy==> 包装函数属性改造成带参装饰器
def copy_pro(src):
def _copy(dst):
dst.__name__ = src.__name__
dst.__doc__ = src.__doc__
return dst
return _copy
def logger(fn):
@copy_pro(fn)
def wrapper(*args,**kwargs):
“l am wrapper”
print(“begin”)
x = fn(*args,**kwargs)
print(“end”)
return x
return wrapper
@logger
def add(x,y):
“this is function for add”
return x+y
print(“name={},doc={}”.format(add.__name__,add.__doc__))
带参装饰器
获取函数的执行时长,对时长超过阈值的函数记录一下
import datetime
import time
def copy_pro(src):
def _copy(dst):
dst.__name__ = src.__name__
dst.__doc__ = src.__doc__
return dst
return _copy
def logger(duration):
def _logger(fn):
@copy_pro(fn)
def wrapper(*args,**kwargs):
start = datetime.datetime.now()
ret = fn(*args,**kwargs)
delta = (datetime.datetime.now() – start).total_seconds()
print(‘so slow’) if delta > duration else print(“so fast”)
return ret
return wrapper
return _logger
@logger(1)
def add(x,y):
time.sleep(2)
return x + y
print(add(5,6))
带参装饰器
他是一个函数
函数作为它的形参
返回值是一个不带参的装饰器函数
使用@functionname方式调用
可以看做在装饰器外层又加了一层函数
将记录的功能提取出来,这样就可以通过外部提供的函数来灵活的控制输出
import datetime
import time
def copy_pro(src):
def _copy(dst):
dst.__name__ = src.__name__
dst.__doc__ = src.__doc__
return dst
return _copy
def logger(duration,func=lambda name,duration:print(“{} took {}s”.format(name,duration))):
def _logger(fn):
@copy_pro(fn)
def weapper(*args,**kwargs):
start = datetime.datetime.now()
ret = fn(*args,**kwargs)
delta = (datetime.datetime.now() – start).total_seconds()
print(‘ {}s.’.format(delta))
if delta > duration:
func(fn.__name__,duration)
print(delta)
return ret
return weapper
return _logger
@logger(5)
def add(x,y):
“this is function for add”
print(“============call add===============”)
return x+y
print(add(4,y=7),add.__name__,add.__doc__)
本文来自投稿,不代表Linux运维部落立场,如若转载,请注明出处:http://www.178linux.com/96911